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PROJECT GOAL

Get surface properties of ices on distant objects from small details in their spectra. Specifically, 
we are developing a neural-net spectral classifier to determine:

• temperature
 • crystalline structure

• composition
 • mixing (e.g., CH4 in N2)

• grain size
 • scattering phase functions

PROJECT OVERVIEW

We are currently concentrating on spectra of H2O, CH4, N2, and CO ices. These ices are common 
throughout the outer solar system and can be used to determine many surface properties of icy 
objects.

We have obtained laboratory optical constants (real and imaginary indices of refraction) for 
crystalline water, amorphous water ice, methane, methane dissolved in nitrogen ice, isolated 
nitrogen ice, and CO ice. For most (but not all) of these species we have optical constants over a 
useful range of temperatures.

We use a Hapke model (a simplified radiative transfer code for light refelected by solid surfaces) 
to generate synthetic spectra from the optical constants. Grain size, mixing states, and scattering 
phase functions are free parameters which are inputs to the Hapke code.

We have applied the neural-net classifier to crystalline water ice. The challenge is to separate the 
effects of grain size from temperature, since both affect the spectra in similar ways. The neural 
net is composed of two stages: a Self-Organizing Map (SOM) and a Widrow-Hoff back-
propagation network. 

Most of this project has concentrated on recovering the grain size and temperature of water ice. 
Previous work on this project helped lead to an award from NASA’s Outer Planets Program to 
study amorphous and crystalline water ice.  



INITIAL WORK & RESULTS

In previous years this project has entailed the following tasks:

•
 Acquisition of optical constants for a series of ices (N2, CO, CO2, CH4, H2O) over a range of 
temperatures.

•
 Generation of model spectra (Fig. 1) for species using a Hapke code (a radiative transfer code 
to calculate reflectance spectra from icy surfaces).

•
 Training of a 2-layer neural network using the model spectra (Fig. 2). The first stage is an 
unsupervised self-organizing map (SOM). The second stage is a conventional back-
propagation network.

•
 Testing the sensitivity of the neural network using “jackknife tests” (Fig. 3)

Fig 1: Synthetic crystalline ice spectra used to train the neural net. The top panel shows spectral variations that 
depend on temperature (for a grain size of 0.003 cm); the bottom panel is a survey of grain sizes at T = 50°C.



Fig 2: In this self-organizing map, the green areas represent crystalline water ice spectra. Nine grain sizes and 126 
temperatures (2K spacing) were used to generate the water ice training set. This SOM shows us that the eight 
compositional candidates (different colors, respresenting spectra of ices of H2O, CO, CO2, CH4, N2, ) are easily 
distinguished, and that within the green areas, grain size characterization dominates over temperature.



Fig 3: The ability to classify temperature and grain size based on the results of “jackknife” tests (Use a fraction of 
the training set (2/3) to train the neural net, then test the neural net with the remaining 1/3 of the spectra; repeat with 
different training/test sets.) These initial tests with crystalline water ice showed that the grain sizes were always 
correctly classified, but temperatures were classified at the ~75% level.

RECENT WORK & RESULTS

Recently we have concentrated on crystalline water ice, a common surface constituent 
throughout the outer solar system. The spectrum of crystalline water ice depnds on both 
temperature and grain size, but larger grains and higher temperatures, to first order, both serve to 
deepen spectral absorption features. One of the main challenges of this project was to determine 
whether a neural net spectal classifier could reliably separate the two correlated parameters, 
temperature and grain size.

The SOM-hybrid neural net (Fig. 4) was used to predict the two parameters.

Fig 4: The SOM-hybrid supervised neural architecture.



This neural supervised architecture is a fully connected feed-forward network, with an SOM as 
the middle layer and an output layer connected to the SOM by the Widrow-Hoff rule. A 230-
band spectrum (from 1 - 2.5 µm) is taken as an input vector during every learning step, 
approximately the range and resolution of infrared image cubes that will be obtained by the New 
Horizons spacecraft.

In the first stage of learning, i.e. unsupervised learning, the middle SOM layer captures the 
structure of the data manifold. The knowledge represented on the SOM is then utilized in the 
second stage of the learning, i.e. supervised learning in the output layer, to achieve a good 
prediction accuracy for the two physical parameters. The dominance of one parameter, grain size, 
is demonstarted in the SOM (Fig. 5) by clearly separated clusters organized by grain size. Within 
these clusters are vectors that span a range of temperatures. 

Fig 5: Left panel: the 20 x 20 SOM trained with synthetic spectra of crystalline water ice. The superimposed colors 
represent known grain sizes from the training set. The black cells represent weight vectors that do not represent any 
training data. Right panel: a subframe from the center of the left panel, with yellow vectors representing 0.003 cm 
grain sizes. In this subgroup there is a continuous change in spectral shapes from left to right caused by increasing 
temperatures. The red boxes and circles indicate low and high temperatures, respectively. (The number pairs show 
the grid locations in the SOM.)

The distribution of temperatures within grain size-dominated clusters suggests an alternative to 
the common “winner take all” (WTA) strategy in which one SOM neuron will fire (have an 
output signal of 1) in response to a given nput vector, and send a zero otherwise. The other 
possibility is to divide the winning credit among k SOM nodes by assigning each an output value 
that is inversely proportional to the distance of its associated prototype vector to the input vector 
(such that the credits add up to 1). This can be called “interpolation mode”. For this study the 
number of neighbors small; we set k = 3. 



Fig 6: Top panel: correlations for True vs. Predicted Temperature (left) and True vs. Predicted Grain Size (right) fir 
the Winner Take All mode. Bottom panel: same as top panel, but the SOM is interrogated in Interpolated Mode. The 
blue, red and green dashed lines indicate 5%, 10% and 50% error envelopes, respectively. Temperature has a smaller 
prediction error in Interpolation Mode. The prediction of grain size is better in the Winner Take All Mode.

The nature of the two physical parameters cause their different dominance on the SOM 
clustering. As a result, they work against each other in the supervised learning when using the 
same interpolation mode. Based on the above observations, we can create a “cojoined twin” 
machine that exploits this duality to improve the overall prediction. It combines the advantages 
of the WTA and interpolation modes, both ”feeding” from the same SOM knowledge.

Fig 7: Conceptual diagram of the cojoined twin machines



FUTURE DIRECTIONS

There are a few questions we would like to investigate with this neural net-based spectral 
classification tool. Like good engineers, we will try to break the tool, specifically, we will assess 
how the prediction rate degrades in the presence of noisy spectral observations. We will also 
assess how the prediction rate suffers in the presence of a range of grain sizes. This work will be 
supported under a NASA OPR subcontract to study amorphous and crystalline water ice 
throughout the solar system.

Under the OPR subcontract, we will feed spectral observations of Ganymede, Callisto, Europa, 
and several saturnian satellites (from Keck, Cassini, and Galileo observations) to the trained net 
to help assess surface water ice temperatures and grain sizes. 


